Indian Statistical Institute, Bangalore Centre. Back-paper Exam : Discrete Mathematics I - B2

Instructor : Yogeshwaran D.

Date : Dec 29, 2023.

Max. points : 40.
Time Limit : 3 hours.
Give complete proofs. Please cite/quote appropriate results from class. You are also allowed to use results from other problems in the question paper.

Answer any four questions. All questions carry 10 points.

1. Let $0<a_{1}<\ldots<a_{s r+1}$ be $s r+1$ integers. Prove that we can select either $s+1$ of them, no one of which divides any other, or $r+1$ of them with each dividing the following one. Prove that this bound is tight.
2. Let G be a bi-partite graph with partitions $V_{1}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $V_{2}=\left\{y_{1}, \ldots, y_{n}\right\}$. Then G has a subgraph H such that $d_{H}\left(x_{i}\right)=$ $d_{i}, d_{H}\left(y_{j}\right) \leq 1, \forall 1 \leq i \leq m$ and $\forall 1 \leq j \leq n$ iff for all $S \subset V_{1}$, we have that $|N(S)| \geq \sum_{x_{i} \in S} d_{i}$. Here $N(S)=\cup_{v \in S} N_{v}$.
3. Two people play a game on a graph G alternatively choosing distinct vertices. Player 1 starts by choosing any vertex. Each subsequent choice must be adjacent to the preceding choice of the other player. Thus together, the two player are creating a path in the graph. The last player able to move wins the game. Show that the second player has a winning strategy if the graph G has a perfect matching and otherwise the first player has a winning strategy.
4. Let $n \leq 2 k$ and A_{1}, \ldots, A_{m} be subsets of $[n]$ such that $A_{i} \cup A_{j} \neq$ $[n], i, j$. Show that $m \leq\left(1-\frac{k}{n}\right)\binom{n}{k}$.
5. Consider an affine plane of order q i.e., a $2-\left(q^{2}, q, 1\right)$ design. Let a parallel class be a set of mutually disjoint lines. Show the following.
(a) Each parallel class contains q lines ;
(b) there are $q+1$ such classes ;
(c) any two lines from different classes intersect at a point ;
(d) and lines of each parallel class form a partition of the points \mathcal{P}.
